Round Values Of A Python Dataframe Column According To Authorized Values
I have this dataframe : df = pd.DataFrame({'id':[1,2,3,4], 'score':[0.35,3.4,5.5,8]}) df id score 0 1 0.35 1 2 3.4 2 3 5.5 3 4 8 and this list : L = list(range
Solution 1:
Numpy solution is better if large DataFrame and performance is important:
L = list(range(1,7))
a = np.array(L)
df['score'] = a[np.argmin(np.abs(df['score'].values - a[:, None]), axis=0)]
print (df)
id score
0 1 1
1 2 3
2 3 5
3 4 6
How it working:
First is converted list to array:
print (a)
[1 2 3 4 5 6]
Then subtract with broadcasting with [:, None]
to 2d array of all combinations:
print (df['score'].values - a[:, None])
[[-0.65 2.4 4.5 7. ]
[-1.65 1.4 3.5 6. ]
[-2.65 0.4 2.5 5. ]
[-3.65 -0.6 1.5 4. ]
[-4.65 -1.6 0.5 3. ]
[-5.65 -2.6 -0.5 2. ]]
Convert values to absolute:
print (np.abs(df['score'].values - a[:, None]))
[[0.65 2.4 4.5 7. ]
[1.65 1.4 3.5 6. ]
[2.65 0.4 2.5 5. ]
[3.65 0.6 1.5 4. ]
[4.65 1.6 0.5 3. ]
[5.65 2.6 0.5 2. ]]
Get positions of minimal values:
print (np.argmin(np.abs(df['score'].values - a[:, None]), axis=0))
[0 2 4 5]
So if use indexing get values of a
:
print (a[np.argmin(np.abs(df['score'].values - a[:, None]), axis=0)])
[1 3 5 6]
Solution 2:
You were really close! I updated the value in the DataFrame and tidied up your lambda function.
df = pd.DataFrame({'id':[1,2,3,4], 'score':[0.35,3.4,5.5,8]})
L = list(range(1,7))
df['score'] = df['score'].apply(lambda num : min(L, key=lambda x:abs(x-num)))
Output:
>>> df
id score
0 1 1
1 2 3
2 3 5
3 4 6
Post a Comment for "Round Values Of A Python Dataframe Column According To Authorized Values"