Python(Pandas) Fills Blanks Cells
I am using Python(Pandas) to manipulate high frequency data. Basically, I need to fill the blank cells. If the this row is blank, then this row will be filled in with the previous
Solution 1:
Use fillna()
property. You can specify the method as forward fill
as follows
import pandas as pd
data = pd.read_csv('sample.csv')
data = data.fillna(method='ffill') # This one forward fills all the columns.
# You can also apply to specific columns as below
# data[['bid','ask']] = data[['bid','ask']].fillna(method='ffill')
print data
Time bid ask
0 15:00 NaN NaN
1 15:00 NaN NaN
2 15:02 76 NaN
3 15:02 76 77
4 15:03 76 77
5 15:03 78 77
6 15:04 78 77
7 15:05 78 80
8 15:05 78 80
9 15:05 78 80
Solution 2:
There is the lesser known ffill
method:
In [102]:
df.ffill()
Out[102]:
Time bid ask
0 15:00 NaN NaN
1 15:00 NaN NaN
2 15:02 76 NaN
3 15:02 76 77
4 15:03 76 77
5 15:03 78 77
6 15:04 78 77
7 15:05 78 80
8 15:05 78 80
9 15:05 78 80
Post a Comment for "Python(Pandas) Fills Blanks Cells"