Pandas: Pairwise Multiplication Of Columns Based On Column Name
I have the following DataFrame >>> df = pd.DataFrame({'ap1_X':[1,2,3,4], 'as1_X':[1,2,3,4], 'ap2_X':[2,2,2,2], 'as2_X':[3,3,3,3]}) >>> df ap1_X as1_X ap2_X
Solution 1:
You can do groupby
with axis=1
and key is the common number
df.groupby(df.columns.str[2],axis=1).prod()
Out[73]:
120161462963166
Solution 2:
You can use filter
here:
df.filter(like='p') * df.filter(like='s').values
ap1_X ap2_X
0161462963166
Another solution is to argsort
the column names and slice. This should be very efficient.
idx = np.argsort(df.columns.str[1])
l = len(df) // 2
df.iloc[:, idx[:l]] * df.iloc[:, idx[l:]].values
ap1_X ap2_X
0 1 6
1 4 6
2 9 6
3 16 6
Post a Comment for "Pandas: Pairwise Multiplication Of Columns Based On Column Name"