Saving A Pandas Dataframe To Separate Jsons Without Nans
I have a dataframe with some NaN values. Here is a sample dataframe: sample_df = pd.DataFrame([[1,np.nan,1],[2,2,np.nan], [np.nan, 3, 3], [4,4,4],[np.nan,np.nan,5], [6,np.nan,np.n
Solution 1:
Use apply
to drop NaN
s, groupby
to group and dfGroupBy.apply
to JSONify.
s = sample_df.apply(lambda x: x.dropna().to_dict(), 1)\
.groupby(sample_df.index // 2)\
.apply(lambda x: x.to_json(orient='records'))
s
0 [{"0":1.0,"2":1.0},{"0":2.0,"1":2.0}]
1 [{"1":3.0,"2":3.0},{"0":4.0,"1":4.0,"2":4.0}]
2 [{"2":5.0},{"0":6.0}]
dtype: object
Finally, iterate over .values
and save to separate JSON files.
import json
for i, j_data in enumerate(s.values):
json.dump(j_data, open('File{}.json'.format(i + 1), 'w'))
Post a Comment for "Saving A Pandas Dataframe To Separate Jsons Without Nans"