How Can I Fill Gaps By Mean In Period Datetime Column In Pandas Dataframe?
I have a dataframe like below: df = pd.DataFrame({'price': ['480,000,000','477,000,000', '608,700,000', '580,000,000', '350,000,000'], 'sale_date': ['1396/10/30','1396/10/30', '139
Solution 1:
You can first reindex without replace missing values to 0
by fill_value
parameter, then forward and fill missiing values with sum by add
and last divide by 2
:
df['sale_date']=df['sale_date'].str.replace('/','').astype(int)
df['price'] = df['price'].str.replace(',','').astype(int)
def conv(x):
return pd.Period(year=x // 10000,
month=x // 100 % 100,
day=x % 100, freq='D')
df['sale_date'] = df['sale_date'].apply(conv)
s = df.groupby('sale_date')['price'].sum()
rng = pd.period_range(s.index.min(), s.index.max(), name='sale_date')
s = s.reindex(rng)
print (s)
sale_date
1396-10-30 957000000.0
1396-10-31 NaN
1396-11-01 608700000.0
1396-11-02 NaN
1396-11-03 580000000.0
1396-11-04 NaN
1396-11-05 NaN
1396-11-06 NaN
1396-11-07 350000000.0
Freq: D, Name: price, dtype: float64
s = s.ffill().add(s.bfill()).div(2).reset_index()
print (s)
sale_date price
0 1396-10-30 957000000.0
1 1396-10-31 782850000.0
2 1396-11-01 608700000.0
3 1396-11-02 594350000.0
4 1396-11-03 580000000.0
5 1396-11-04 465000000.0
6 1396-11-05 465000000.0
7 1396-11-06 465000000.0
8 1396-11-07 350000000.0
print ((957000000 + 608700000)/ 2)
782850000.0
Post a Comment for "How Can I Fill Gaps By Mean In Period Datetime Column In Pandas Dataframe?"