How Do I Quantize Data In Pandas?
I have a DataFrame like this a = pd.DataFrame(a.random.random(5, 10), columns=['col1','col2','col3','col4','col5']) I'd like to quantize a specific column, say col4, according to
Solution 1:
Perhaps qcut()
is what you're seeking. Short answer:
df['quantized'] = pd.qcut(df['col4'], 5, labels=False )
Longer explanation:
>>>import pandas as pd>>>import numpy as np>>>df = pd.DataFrame(np.random.randn(10, 5), columns=['col1','col2','col3','col4','col5'])>>>df
col1 col2 col3 col4 col5
0 0.502017 0.290167 0.483311 1.755979 -0.866204
1 0.374881 -1.372040 -0.533093 1.559528 -1.835466
2 -0.110025 -1.071334 -0.474367 -0.250456 0.428927
3 -2.070885 0.095878 -3.133244 -1.295787 0.436325
4 -0.974993 0.591984 -0.839131 -0.949721 -1.130265
5 -0.383469 0.453937 -0.266297 -1.077004 0.123262
6 -2.548547 0.424707 -0.955433 1.147909 -0.249138
7 1.056661 0.949915 -0.234331 -0.146116 0.552332
8 0.029098 -1.016712 -1.252748 -0.216355 0.458309
9 0.262807 0.029040 -0.843372 0.492120 0.128395
You can use pd.qcut()
to get the corresponding range.
>>> q = pd.qcut(df['col4'], 5)
>>> q
0 (1.23, 1.756]
1 (1.23, 1.756]
2 (-0.975, -0.23]
3 [-1.296, -0.975]
4 (-0.975, -0.23]
5 [-1.296, -0.975]
6 (0.109, 1.23]
7 (-0.23, 0.109]
8 (-0.23, 0.109]
9 (0.109, 1.23]
Name: col4, dtype: category
Categories (5, object): [[-1.296, -0.975] < (-0.975, -0.23] < (-0.23, 0.109] < (0.109, 1.23] < (1.23, 1.756]]
You can set parameter labels=False
to get the integer representation
>>>q = pd.qcut(df['col4'], 5, labels=False)>>>q
0 4
1 4
2 1
3 0
4 1
5 0
6 3
7 2
8 2
9 3
dtype: int64
- First argument is an array or Series.
- Second argument is number of quantiles you'd like.
- Documentation here for more options. http://pandas.pydata.org/pandas-docs/stable/generated/pandas.qcut.html
Solution 2:
Most pandas objects are compatible with numpy functions. I would use numpy.digitize
:
import pandas as pd
a = pd.DataFrame(pd.np.random.random((5, 5)), columns=['col1','col2','col3','col4','col5'])
# col1 col2 col3 col4 col5#0 0.523311 0.266401 0.939214 0.487241 0.582323#1 0.274436 0.761046 0.155482 0.630622 0.044595#2 0.505696 0.953183 0.643918 0.894726 0.466916#3 0.281888 0.621781 0.900743 0.339057 0.427644#4 0.927478 0.442643 0.541234 0.450761 0.191215
pd.np.digitize( a.col4, bins = [0.3,0.6,0.9 ] )
#array([1, 2, 2, 1, 1])
Solution 3:
Pandas has a built in function pd.cut
which allows you to specify bins and labels. Following Dermen's example:
df = pd.DataFrame(pd.np.random.random((5, 5)), columns=['col1', 'col2', 'col3', 'col4', 'col5'])
# col1 col2 col3 col4 col5# 0 0.693759 0.175076 0.260484 0.883670 0.318821# 1 0.062635 0.413724 0.341535 0.952104 0.854916# 2 0.837990 0.440695 0.341482 0.833220 0.688664# 3 0.652480 0.271256 0.338068 0.757838 0.311720# 4 0.782419 0.567019 0.839786 0.208740 0.245261
pd.cut(df.col4, bins = [0, 0.3, 0.6, 0.9, 1], labels=['A', 'B', 'C', 'D'])
# 0 C# 1 D# 2 C# 3 C# 4 A# Name: col4, dtype: category# Categories (4, object): [A < B < C < D]
Solution 4:
You can use pandas.DataFrame.quantile
which uses numpy.percentile
You can read documentation here
But maybe you're searching pd.qcut
, regarding that @cchi gave the perfect example below.
Post a Comment for "How Do I Quantize Data In Pandas?"