Match One Table And Map Value To Other In Pandas Python
I have two pandas dataframes: df1: LT route_1 c2 PM/2 120 44 PM/52 110 49 PM/522 103 51 PM/522 103 51 PM/24 105 48 PM/536 109 67 PM/536 109 67 P
Solution 1:
I think map
should work:
df1['route_1'] = df1['LT'].map(df2.set_index('LT')['W_ID'])
Unfortunately not:
InvalidIndexError: Reindexing only valid with uniquely valued Index objects
EDIT:
Problem is with duplicates
in LT
column. Solution is add helper column by cumcount
for unique left join
by merge
:
df1['g'] = df1.groupby('LT').cumcount()
df2['g'] = df2.groupby('LT').cumcount()
df = pd.merge(df1, df2, on=['LT','g'], how='left')
print (df)
LT route_1 c2 g W_ID
0 PM/2 120 44 0 120.0
1 PM/52 110 49 0 110.0
2 PM/522 103 51 0 103.0
3 PM/522 103 51 1 103.0
4 PM/24 105 48 0 105.0
5 PM/536 109 67 0 109.0
6 PM/536 109 67 1 109.0
7 PM/5356 112 144 0 112.0
df1['route_1'] = df['W_ID']
df1.drop('g', axis=1, inplace=True)
print (df1)
LT route_1 c2
0 PM/2 120.0 44
1 PM/52 110.0 49
2 PM/522 103.0 51
3 PM/522 103.0 51
4 PM/24 105.0 48
5 PM/536 109.0 67
6 PM/536 109.0 67
7 PM/5356 112.0 144
Similar solution:
df1['g'] = df1.groupby('LT').cumcount()
df2['g'] = df2.groupby('LT').cumcount()
df = pd.merge(df1, df2, on=['LT','g'], how='left')
.drop(['g', 'route_1'], axis=1)
.rename(columns={'W_ID':'route_1'})
.reindex_axis(['LT', 'route_1', 'c2'], axis=1)
print (df)
LT route_1 c2
0 PM/2 120.0 44
1 PM/52 110.0 49
2 PM/522 103.0 51
3 PM/522 103.0 51
4 PM/24 105.0 48
5 PM/536 109.0 67
6 PM/536 109.0 67
7 PM/5356 112.0 144
Post a Comment for "Match One Table And Map Value To Other In Pandas Python"