Indexing In Numpy (related To Max/argmax)
Suppose I have an N-dimensional numpy array x and an (N-1)-dimensional index array m (for example, m = x.argmax(axis=-1)). I'd like to construct (N-1) dimensional array y such that
Solution 1:
you can use indices :
firstdims=np.indices(x.shape[:-1])
And add yours :
ind=tuple(firstdims)+(m,)
Then x[ind]
is what you want.
In [228]: allclose(x.max(-1),x[ind])
Out[228]: True
Solution 2:
Here's one approach using reshaping
and linear indexing
to handle multi-dimensional arrays of arbitrary dimensions -
shp = x.shape[:-1]
n_ele = np.prod(shp)
y_out = x.reshape(n_ele,-1)[np.arange(n_ele),m.ravel()].reshape(shp)
Let's take a sample case with a ndarray
of 6 dimensions
and let's say we are using m = x.argmax(axis=-1)
to index into the last dimension. So, the output would be x.max(-1)
. Let's verify this for the proposed solution -
In [121]: x = np.random.randint(0,9,(4,5,3,3,2,4))
In [122]: m = x.argmax(axis=-1)
In [123]: shp = x.shape[:-1]
...: n_ele = np.prod(shp)
...: y_out = x.reshape(n_ele,-1)[np.arange(n_ele),m.ravel()].reshape(shp)
...:
In [124]: np.allclose(x.max(-1),y_out)
Out[124]: True
I liked @B. M.'s
solution for its elegance. So, here's a runtime test to benchmark these two -
defreshape_based(x,m):
shp = x.shape[:-1]
n_ele = np.prod(shp)
return x.reshape(n_ele,-1)[np.arange(n_ele),m.ravel()].reshape(shp)
defindices_based(x,m): ## @B. M.'s solution
firstdims=np.indices(x.shape[:-1])
ind=tuple(firstdims)+(m,)
return x[ind]
Timings -
In [152]: x = np.random.randint(0,9,(4,5,3,3,4,3,6,2,4,2,5))
...: m = x.argmax(axis=-1)
...:
In [153]: %timeit indices_based(x,m)
10 loops, best of 3: 30.2 ms per loop
In [154]: %timeit reshape_based(x,m)
100 loops, best of 3: 5.14 ms per loop
Post a Comment for "Indexing In Numpy (related To Max/argmax)"