Manipulating Data Of A Dataframe In Pandas
I'm reading a dataframe and converting it into a json file. I'm using python 3 and 0.25.3 version of pandas for it. I already got some help from you guys (Manipulating data of Pand
Solution 1:
1st Question:
You can write custom function for rename, e.g. like:
def f(x):
vals = ['part_number', 'number_client']
if x in vals:
return x
else:
return x.split('_')[0]
2nd Question
If I understand correctly keys in final json are created from columns of original Dataframe, and also by parameter name
by reset_index
of my solution. If want some another logic for change keys (columns names) is possible change first solution.
3rd Question
In original solution is changed to_json
to to_dict
for possible modify final list of dict like append text
info, for json is used json.dumps
in last step:
import json
def f(x):
vals = ['part_number', 'number_client']
if x in vals:
return x
else:
return x.split('_')[0]
d =(data.groupby(["id","label","id_customer","label_customer"])['part_number','number_client']
.apply(lambda x: x.rename(columns=f).to_dict('r')).reset_index(name='Number')
.groupby(["id", "label"])[ "id_customer", "label_customer", "Number"]
.apply(lambda x: x.rename(columns=f).to_dict('r')).reset_index(name='Customer')
.to_dict(orient='records'))
#print (d)
d1 = (data[['Additional_information']].rename(columns={'Additional_information':'text'})
.to_dict(orient='records'))
d1 = {'Additional_information':d1}
print (d1)
{'Additional_information': [{'text': 'testing'}, {'text': 'testing again'}]}
d.append(d1)
#print (d)
j = json.dumps(d)
#print (j)
Post a Comment for "Manipulating Data Of A Dataframe In Pandas"