How To Sample A Numpy Array And Perform Computation On Each Sample Efficiently?
Assume I have a 1d array, what I want is to sample with a moving window and within the window divide each element by the first element. For example if I have [2, 5, 8, 9, 6] and a
Solution 1:
Here's a vectorized approach using broadcasting
-
N = 3# Window sizenrows = a.size-N+1a2D = a[np.arange(nrows)[:,None] + np.arange(N)]
out = a2D/a[:nrows,None].astype(float)
We can also use NumPy strides
for a more efficient extraction of sliding windows, like so -
n = a.strides[0]
a2D = np.lib.stride_tricks.as_strided(a,shape=(nrows,N),strides=(n,n))
Sample run -
In [73]: a
Out[73]: array([4, 9, 3, 6, 5, 7, 2])
In [74]: N =3
...: nrows = a.size-N+1
...: a2D = a[np.arange(nrows)[:,None] + np.arange(N)]
...: out= a2D/a[:nrows,None].astype(float)
...:
In [75]: outOut[75]:
array([[ 1. , 2.25 , 0.75 ],
[ 1. , 0.33333333, 0.66666667],
[ 1. , 2. , 1.66666667],
[ 1. , 0.83333333, 1.16666667],
[ 1. , 1.4 , 0.4 ]])
Post a Comment for "How To Sample A Numpy Array And Perform Computation On Each Sample Efficiently?"