Pandas Ewm Var And Std
I unsuccessfully tried to replicate the calculation of exponential weighted moving variance. here is the code I used. import pandas as pd import numpy as np l = [12., 12.5, 13.1,
Solution 1:
Copy-pasted the code posted by kosnik and build it up to answer this question. below:
# Import librariesimport numpy as np
import pandas as pd
# Create DataFrame
l = [12., 12.5, 13.1, 14.6, 17.8, 19.1, 24.5]
df = pd.DataFrame(data=l, columns=['data'])
# Initialize
N = 5# Span
a = 2./(1+N) # Alpha# Use .evm() to calculate 'exponential moving variance' directly
var_pandas = df.ewm(span=N).var()
# Initialize variable
varcalc=[]
# Calculate exponential moving variancefor i inrange(0,len(df.data)):
# Get window
z = np.array(df.data.iloc[0:i+1].tolist())
# Get weights: w
n = len(z)
w = (1-a)**np.arange(n-1, -1, -1) # This is reverse order to match Series order# Calculate exponential moving average
ewma = np.sum(w * z) / np.sum(w)
# Calculate bias
bias = np.sum(w)**2 / (np.sum(w)**2 - np.sum(w**2))
# Calculate exponential moving variance with bias
ewmvar = bias * np.sum(w * (z - ewma)**2) / np.sum(w)
# Calculate standard deviation
ewmstd = np.sqrt(ewmvar)
varcalc.append(ewmvar)
#print('ewmvar:',ewmvar)#varcalc
df['var_pandas'] = var_pandas
df['varcalc'] = varcalc
df
Post a Comment for "Pandas Ewm Var And Std"