Groupby Count Only When A Certain Value Is Present In One Of The Column In Pandas
I have a dataframe similar to the below mentioned database: +------------+-----+--------+ | time | id | status | +------------+-----+--------+ | 1451606400 | id1 | Yes
Solution 1:
Use lambda function with apply
and for count sum
boolena True
values proccesses like 1
:
df1 = (df.groupby(['time','id','status'])
.apply(lambda x: (x['status']== 'Yes').sum())
.reset_index(name='count'))
Or create new column and aggregate sum
:
df1 = (df.assign(A=df['status']=='Yes')
.groupby(['time','id','status'])['A']
.sum()
.astype(int)
.reset_index(name='count'))
Very similar solution with no new column, but worse readable a bit:
df1 = ((df['status']=='Yes')
.groupby([df['time'],df['id'],df['status']])
.sum()
.astype(int)
.reset_index(name='count'))
print (df)
time id status count
0 1451606400 id1 Yes 2
1 1456790400 id2 No 0
2 1456790400 id2 Yes 1
Solution 2:
If you don't mind a slightly different output format, you can pd.crosstab
:
df = pd.DataFrame({'time': [1451606400]*2 + [1456790400]*3,
'id': ['id1']*2 + ['id2']*3,
'status': ['Yes', 'Yes', 'No', 'Yes', 'No']})
res = pd.crosstab([df['time'], df['id']], df['status'])
print(res)
status No Yes
time id
1451606400 id1 0 2
1456790400 id2 2 1
The result is a more efficient way to store your data as you don't repeat your index in a separate row for every "Yes" / "No" category.
Post a Comment for "Groupby Count Only When A Certain Value Is Present In One Of The Column In Pandas"