Insert Multiple Elements Into Pandas Series Where Similarities Exist
Here I'd like to insert the row 'None' between wherever there are two rows with 'href' in the tag--note, each row with href is NOT identical. im
Solution 1:
Than can be easily achieved if you go to numpy.
In your example:
dups = table.str.contains('href') & table.shift(1).str.contains('href')
array = np.insert(table.values, dups[dups].index, "<td class='test'>None</td>")
pd.Series(array)
Solution 2:
Ecotrazar's solution above is both faster and more elegant. Here is my version using for loops and his numpy insert method.
import pandas as pd
table = pd.Series(
["<td class='test'><a class='test' href=...", # 0 "<td class='test'>A</td>", # 1"<td class='test'><a class='test' href=...", # 2"<td class='test'>B</td>", # 3"<td class='test'><a class='test' href=...", # 4"<td class='test'><a class='test' href=...", # 5"<td class='test'>C</td>", # 6"<td class='test'><a class='test' href=...", # 7 "<td class='test'>F</td>", # 8"<td class='test'><a class='test' href=...", # 9 "<td class='test'><a class='test' href=...", # 10 "<td class='test'>X</td>"]) # 11
insertAt = []
for i inrange(0, len(table)):
if'href'in table[i] and'href'in table[i + 1] and i == 0:
print(i + 1, ' is duplicated')
insertAt.append(True)
elif i == 0:
insertAt.append(False)
if'href'in table[i] and'href'in table[i+1] and i > 0:
print(i + 1, ' is duplicated')
insertAt.append(True)
else:
insertAt.append(False)
insertAt = pd.Series(insertAt)
print(insertAt)
import numpy as np
array = np.insert(table.values, insertAt[insertAt].index, "<td class='test'>None</td>")
pd.Series(array) # back to series if necessary
Post a Comment for "Insert Multiple Elements Into Pandas Series Where Similarities Exist"