Convert Pandas Series Of Lists To Dataframe
Solution 1:
As @Hatshepsut pointed out in the comments, from_items is deprecated as of version 0.23. The link suggests to use from_dict instead, so the old answer can be modified to:
pd.DataFrame.from_dict(dict(zip(s.index, s.values)))
--------------------------------------------------OLD ANSWER-------------------------------------------------------------
You can use from_items like this (assuming that your lists are of the same length):
pd.DataFrame.from_items(zip(s.index, s.values))
01014125236or
pd.DataFrame.from_items(zip(s.index, s.values)).T
01201231456depending on your desired output.
This can be much faster than using an apply (as used in @Wen's answer which, however, does also work for lists of different length):
%timeitpd.DataFrame.from_items(zip(s.index,s.values))1000 loops,best of 3:669µsperloop%timeits.apply(lambdax:pd.Series(x)).T1000 loops,best of 3:1.37msperloopand
%timeitpd.DataFrame.from_items(zip(s.index,s.values)).T1000 loops,best of 3:919µsperloop%timeits.apply(lambdax:pd.Series(x))1000 loops,best of 3:1.26msperloopAlso @Hatshepsut's answer is quite fast (also works for lists of different length):
%timeit pd.DataFrame(item foritemin s)
1000 loops, best of 3: 636 µs per loopand
%timeit pd.DataFrame(item foritemin s).T
1000 loops, best of 3: 884 µs per loopFastest solution seems to be @Abdou's answer (tested for Python 2; also works for lists of different length; use itertools.zip_longest in Python 3.6+):
%timeitpd.DataFrame.from_records(izip_longest(*s.values))1000 loops,best of 3:529µsperloopAn additional option:
pd.DataFrame(dict(zip(s.index, s.values)))
01014125236Solution 2:
If the length of the series is super high (more than 1m), you can use:
s = pd.Series([[1, 2, 3], [4, 5, 6]])
pd.DataFrame(s.tolist())
Solution 3:
Iterate over the series like this:
series = pd.Series([[1, 2, 3], [4, 5, 6]])
pd.DataFrame(item for item in series)
01201231456Solution 4:
pd.DataFrame.from_records should also work using itertools.zip_longest:
from itertools import zip_longest
pd.DataFrame.from_records(zip_longest(*s.values))
# 0 1# 0 1 4# 1 2 5# 2 3 6Solution 5:
Try:
import numpy as np, pandas as pd
s = pd.Series([[1, 2, 3], [4, 5, 6]])
pd.DataFrame(np.vstack(s))
Post a Comment for "Convert Pandas Series Of Lists To Dataframe"