How Exactly Does Numpy.where() Select The Elements In This Example?
Solution 1:
In the first case, each term is a (2,2)
array (or rather list that can be made into such an array). For each True
in the condition, it returns the corresponding term in x
, the [[1 -][3,4]]
, and for each False
, the term from y
[[- 8][- -]]
In the second case, the lists are ragged
In [1]: [[True, False,True], [False, True]]
Out[1]: [[True, False, True], [False, True]]
In [2]: np.array([[True, False,True], [False, True]])
Out[2]: array([list([True, False, True]), list([False, True])], dtype=object)
the array is (2,), with 2 lists. And when cast as boolean, a 2 element array, with both True. Only an empty list would produce False.
In [3]: _.astype(bool)
Out[3]: array([ True, True])
The where then returns just the x
values.
This second case is understandable, but pathological.
more details
Let's demonstrate where
in more detail, with a simpler case. Same condition array:
In [57]: condition= np.array([[True, False], [True, True]])
In [58]: conditionOut[58]:
array([[ True, False],
[ True, True]])
The single argument version, which is the equivalent to condition.nonzero()
:
In [59]: np.where(condition)
Out[59]: (array([0, 1, 1]), array([0, 0, 1]))
Some find it easier to visualize the transpose
of that tuple - the 3 pairs of coordinates where condition
is True:
In [60]: np.argwhere(condition)
Out[60]:
array([[0, 0],
[1, 0],
[1, 1]])
Now the simplest version with 3 arguments, with scalar values.
In [61]: np.where(condition, True, False) # same asconditionOut[61]:
array([[ True, False],
[ True, True]])
In [62]: np.where(condition, 100, 200)
Out[62]:
array([[100, 200],
[100, 100]])
A good way of visualizing this action is with two masked assignments.
In [63]: res = np.zeros(condition.shape, int)
In [64]: res[condition] = 100
In [65]: res[~condition] = 200
In [66]: res
Out[66]:
array([[100, 200],
[100, 100]])
Another way to do this is to initial an array with the y
value(s), and where the nonzero where to fill in the x
value.
In [69]: res = np.full(condition.shape, 200)
In [70]: res
Out[70]:
array([[200, 200],
[200, 200]])
In [71]: res[np.where(condition)] = 100
In [72]: res
Out[72]:
array([[100, 200],
[100, 100]])
If x
and y
are arrays, not scalars, this masked assignment will require refinements, but hopefully for a start this will help.
Solution 2:
np.where(condition,x,y)
It checks the condition and if its True returns x else it returns y
np.where([[True, False], [True, True]],
[[1, 2], [3, 4]],
[[9, 8], [7, 6]])
Here you condition is[[True, False], [True, True]]
x = [[1 , 2] , [3 , 4]]
y = [[9 , 8] , [7 , 6]]
First condition is true so it return 1 instead of 9
Second condition is false so it returns 8 instead of 2
Solution 3:
After reading about broadcasting as @hpaulj suggested I think I know how the function works.
It will try to broadcast the 3 arrays,then if the broadcast was successful it will use the True
and False
values to pick elements either from x or y.
In the example
>>>np.where([[True, False,True], [False, True]], [[1, 2,56], [3, 4]], [[9, 8,79], [7, 6]])
We have
cnd=np.array([[True, False,True], [False, True]])
x=np.array([[1, 2,56], [3, 4]])
y=np.array([[9, 8,79], [7, 6]])
Now
>>>x.shapeOut[7]: (2,)
>>>y.shapeOut[8]: (2,)
>>>cnd.shapeOut[9]: (2,)
So all three are just arrays with 2 elements(of type list) even the condition(cnd).So both [True, False,True]
and [False, True]
will be evaluated as True
.And both the elements will be selected from x.
>>>np.where([[True, False,True], [False, True]], [[1, 2,56], [3, 4]], [[9, 8,79], [7, 6]])
Out[10]: array([list([1, 2, 56]), list([3, 4])], dtype=object)
I also tried it with a more complex example(a 2x2x2
broadcast) and it still explains it.
np.where([[[True,False],[True,True]], [[False,False],[True,False]]],
[[[12,45],[10,50]], [[100,10],[17,81]]],
[[[90,93],[85,13]], [[12,345], [190,56,34]]])
Where
cnd=np.array([[[True,False],[True,True]], [[False,False],[True,False]]])
x=np.array([[[12,45],[10,50]], [[100,10],[17,81]]])
y=np.array( [[[90,93],[85,13]], [[12,345], [190,56,34]]])
Here cnd
and x
have the shape (2,2,2)
and y
has the shape (2,2)
.
>>>cnd.shapeOut[14]: (2, 2, 2)
>>>x.shapeOut[15]: (2, 2, 2)
>>>y.shapeOut[16]: (2, 2)
Now as @hpaulj commented y
will be broadcasted to (2,2,2).
And it'll probably look like this
>>>cnd
Out[6]:
array([[[ True, False],
[ True, True]],
[[False, False],
[ True, False]]])
>>>x
Out[7]:
array([[[ 12, 45],
[ 10, 50]],
[[100, 10],
[ 17, 81]]])
>>>np.broadcast_to(y,(2,2,2))
Out[8]:
array([[[list([90, 93]), list([85, 13])],
[list([12, 345]), list([190, 56, 34])]],
[[list([90, 93]), list([85, 13])],
[list([12, 345]), list([190, 56, 34])]]], dtype=object)
And the result can be easily predicted to be
>>>np.where([[[True,False],[True,True]], [[False,False],[True,False]]], [[[12,45],[10,50]], [[100,10],[17,81]]],[[[90,93],[85,13]], [[12,345], [190,56,34]]])
Out[9]:
array([[[12, list([85, 13])],
[10, 50]],
[[list([90, 93]), list([85, 13])],
[17, list([190, 56, 34])]]], dtype=object)
Post a Comment for "How Exactly Does Numpy.where() Select The Elements In This Example?"