Pandas Dataframe - Select Columns With A Specific Value In A Specific Row
I want to select columns with a specific value (say 1) in a specific row (say first row) for Pandas Dataframe
Solution 1:
Use iloc
with boolean indexing
, for performance is better filtering index
not DataFrame
and then select index (see performance):
df = pd.DataFrame({
'A':list('abcdef'),
'B':[4,5,4,5,5,4],
'C':[7,8,9,4,2,3],
'D':[1,3,5,7,1,0],
'E':[5,3,6,9,2,4],
'F':list('aaabbb')
})
print (df)
A B C D E F
0 a 4 7 1 5 a
1 b 5 8 3 3 a
2 c 4 9 5 6 a
3 d 5 4 7 9 b
4 e 5 2 1 2 b
5 f 4 3 0 4 b
s = df.iloc[0]
a = s.index[s == 1]
print (a)
Index(['D'], dtype='object')
a = s.index.values[(s == 1)]
print (a)
['D']
Solution 2:
You can use iloc
to extract a row as a series, then apply your condition:
row = df.iloc[0] # extract first row as seriesres = row[res == 1].index # filter for values equal to 1 and get columns via index
Post a Comment for "Pandas Dataframe - Select Columns With A Specific Value In A Specific Row"