Pandas Cumcount() When Np.nan Exists
I have a dataframe like this: df = pd.DataFrame([[1, 2, np.nan], [1, np.nan, 3], [2, 2, 3], [3, 4, np.nan]]) when I groupb
Solution 1:
groupby
omit NaN
s rows so possible solution should be replace them to value which not exist in data, e.g. -1
.
Btw, cumcount
seems create with omited rows separated group.
for i, dfin df.groupby([0, 1, 2]):
print (df)
0 1 2
2 2 2.0 3.0
print (df.fillna(-1).groupby([0, 1, 2]).cumcount())
00102030
dtype: int64
Post a Comment for "Pandas Cumcount() When Np.nan Exists"